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OLTP Workloads

● Short-lived transactions
● Touch few data items
● Write-heavy



Scaling OLTP Databases
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Scaling Out OLTP Databases
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Distributed Transactions

A

B

Commit at both or not at all!



Two-Phase Commit
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Two-Phase Commit (Phase 1)
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Two-Phase Commit (Phase 1)
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Two-Phase Commit (Phase 2)
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Two-Phase Commit (Phase 2)
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2PC Overheads
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Blocked!



2PC Overheads



Avoiding 2PC
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Avoiding 2PC

A,B

Overloaded?



Objectives
1.  Minimize distributed transactions
2.  Roughly balance load/data

Similar to Graph Partitioning problem!
Minimize Edge-cuts subject to imbalance factor



K-Way Graph Partitioning
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Mapping Partitioning to Graphs

Statement Logging

Determine tuple access 
patterns and 
frequencies!



Mapping Partitioning to Graphs
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Mapping Partitioning to Graphs
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Mapping Partitioning to Graphs
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Mapping Partitioning to Graphs
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Incorporating Replication
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Explaining the Partitioning
ID <= 2

ID = 1 ID <= 4

Yes No

{0,1} 0 0 1

 Prefer simple explanations



Schism Partitionings
● YCSB-Default: Hash Partitioning
● YCSB-Range: Range Partitioning
● TPC-C: Hash on warehouse, replicate items table
● TPC-E: Lookup table, no good known manual partitioning
● Epinions: Lookup table, beats manual partitioning

Longest Partitioning: 12 minutes!







Discussion Points
● Schism is offline/periodic. How important is 

online partitioning, really?
● Would an OLAP workload change how we 

partition? Consider parallel query execution.


