Schism: Workload-Driven
Partitioning and Replication

Curino et al., VLDB 2010
Presented By: Brad Glasbergen

IIIIIIIIIIII



OLTP Workloads

e Short-lived transactions
e [ouch few data items
e \Write-heavy

OO0

IIIIIIIIIIII



Scaling OLTP Databases

&\
&/\/

Overloaded!

WAT ERLOO




Scaling Out OLTP Databases
& > A
Orders N

\ :

''''''''''''

% WATERLOO




Distributed Transactions

O

Commit at both or not at all!

\

E
& j
\/ IIIIIIIIIIII

% WATERLOO




Two-Phase Commit

Run Transaction A=A-1
Logic A
A28 S
B=B-1
B
S AR

% WATERLOO



Two-Phase Commit (Phase 1)

Can we commit?
A28 —

''''''''''''

% WATERLOO




Two-Phase Commit (Phase 1)

Can we commit? A OK
OK
B
N g e o

% WATERLOO



Two-Phase Commit (Phase 2)

Commit!
A
A28 —
B
N g e o

% WATERLOO



Two-Phase Commit (Phase 2)

Commit! OK
A

OK
B

''''''''''''

% WATERLOO



2PC Overheads

3
& Lock(A,B) A

SZ ., Blocked! _ B
N A

% WATERLOO



2PC Overheads

50k

Single Partition —+—
Distributed —-»--

=
=
8 Ok s s G o T o S N o S A
)]
wn
~
§2)
O 30k
=
g e
20K [ e LT
3 i
o) =
8 _—’—
B | T e
3 10k z
=
|_
O 1 1 1
1 22 3 4 5
Servers

SO AT Y I = AN = 4 S
&




Avoiding 2PC

O Move B

£ A
§<<%

B
\/ IIIIIIIIIIII

% WATERLOO




Avoiding 2PC Overloaded?

3

2 &

& \/ UUUUUUUUUUUU

% WATERLOO




Objectives

1. Minimize distributed transactions
2. Roughly balance load/data

Similar to Graph Partitioning problem!
Minimize Edge-cuts subject to imbalance factor

IIIIIIIIIIII



K-Way Graph Partitioning

IIIIIIIIIIII



K-Way Graph Partitioning




K-Way Graph Partitioning




K-Way Graph Partitioning




K-Way Graph Partitioning




Mapping Partitioning to Graphs

O Statement Logging

N— 4

Determine tuple access
patterns and
frequencies!

............
%} WATERLOO



Mapping Partitioning to Graphs

Accessed tuples
become nodes

IIIIIIIIIIII



Mapping Partitioning to Graphs

Edges:
Frequency of
tuples
accessed
together

IIIIIIIIIIII



Mapping Partitioning to Graphs

Decide balance
factor

IIIIIIIIIIII



Mapping Partitioning to Graphs




Incorporating Replication




Incorporatlng Repllcatlon




Incorporatlng Repllcatlon




Incorporatlng Repllcatlon




Explaining the Partitioning

Yes ID <=2 No
/ D = 1 \ j ID <=4 \
{0,1) 0 0 1

Prefer simple explanations

IIIIIIIIIIII



Schism Partitionings

YCSB-Default: Hash Partitioning

YCSB-Range: Range Partitioning

TPC-C: Hash on warehouse, replicate items table
TPC-E: Lookup table, no good known manual partitioning
Epinions: Lookup table, beats manual partitioning

Longest Partitioning: 12 minutes!

IIIIIIIIIIII

%} WATERLOO



The VLDB Joumal (2014) 23:845-870
DOI 10.1007/s00778-01 4-0362- 1

SPECIAL ISSUE PAPER

SWORD: workload-aware data placement and replica selection

for cloud data management systems

K. Ashwin Kumar - Abdul Quamar -
Amol Deshpande - Samir Khuller

Received: 23 September 2013 / Revised: 6 April 2014/ Accepied: 4 Jus
© Sprin ger-Verlag Berlin Heidelberg 2014

Abstract Cloud computing is increasingly being seen as
a way to reduce infrastructure costs and add elasticity, and
is being used by a wide range of organizations. Cloud data
management systems today need to serve a range of different
workloads, from analytical read-heavy workloads to trans-
actional (OLTP) workloads. For both the service providers
and the users, it is critical to minimize the consumption of
resources like CPU, memory, communication bandwidth,
and energy, without compromising on service-level

ments if any. In this article, we develop a workload-aware
data placement and replication approach, called SWORD, for
minimizing resource consumption in such an environment.
Specifically. we monitor and model the expected workload as
a Inypergraph and develop partitioning techniques that min-
imize the average query span. i.e.. the average number of
machines involved in the execution of a query or a transac-
tion. We empirically justify the use of guery span as the met-
ric to optimize, for both analytical and transactional work-
loads, and develop a series of replication and data placement
algorithms by drawing connections to several well-studied
graph theoretic concepts. We introduce a suite of novel tech-
niques to achieve high scalability by reducing the overhead
of partitioning and query routing. To deal with workload
changes, we propose an incremental repartitioning technique
that modifies data placement in small steps without re

K. A. Kumar (&) - A. Quamar - A. Deshpande - S. Khuller
University of Maryland, Colkege Park, MD. USA
shwin cs.umd cdu

A. Quamar

ail: abdul @ cs.umd edu

A. Deshpande
ail: amol @cs.umd.odu

S. Khuller

2014 / Published online: 24 June 2014

ing to complete repartitioning. We propose the use of fine-
grained quorums defined at the level of groups of data items
to control the cost of distributed updates. improve through-
put. and adapt to different workloads. We empirically illus-
trate the benefits of our approach through a comprehensive
experimental evaluation for two classes of workloads. For
analytical read-only workloads, we show that our techniques
result in significant reduction in total resource consumption.
For OLTP workloads, we show that our approach improves
transaction latencies and overall throughput by minimizing
the number of distributed transactions.

Keywords Cloud data management - Hypergraph
partitioning - Data placement - Replication - Resource
minimization - Scalability

1 Introduction

Cloudcomputing is increasingly embraced by a wide range of
organizations because of its promise to reduce infrastructure
costs and provide elastic scalability on demand. This has led
1o a proliferation of cloud-based data management systems
toenable such services, and data centers to provide the com-
putational infrastructure for them. Cloud data management
systems today need to serve a range of different workloads.
These include mostly read-only analytical workloads that
need to process large volumes of data in a resource-efficient
manner. as well as transactional OLTP-style workloads that
need to support high throughputs with low latencies. For
both the service provider and the users, it is crucial to mini
mize the total resource consumption in executing these work-
loads, without compromising on service-level agreements if
any. For the service provider, lower resource consumption
will enable it to serve a larger number of users without fur-
ther investment into resources, whereas for the users, lower

£) Springer

>

UNIVERSITY OF

WATERLOO




Accordion: Elastic Scal
Supporting Dist

Marco Serafini Ess
Qatar Computing Research Qatar Ct
Institute
mserafini@qgf.org.qa eman
Kenneth Salem 1
University of Waterloo A
kmsalem@uwaterloo.ca  taharal

ABSTRACT

Providing the ability to clastically use more or fewer servers
demand (scale out and scale in) as the load varies is essential
database management systems (DBMSes) deployed on today”s
tributed computing platforms, such as the cloud. This requires st
ing the problem of dynamic (online) data placement, which has
far been addressed only for workloads where all transactions are
cal to one sever. In DBMSes where ACID transactions can acc
mare than one partition, distributed transactions represent a mi
performance bottlence aling out and spreading data acro:
larger number of servers does not necessarily result in a linear
crease in the overall system throughput, because transactions |
used to access only one server may become distributed.

In this paper we present Accordion, a dynamic data placem
system for partition-based DBMSes that support ACID transacti
(local or distributed). It docs so by explicitly considering the af
ify between partitions, which indicates the frequency in which ¢
are accessed together by the same transactions. Accordion ¢
‘mates the capacity of a server by explicitly considering the imy
of distributed transactions and affinity on the maximum through
of the server. It then integrates this estimation in a mixed-inte
linear program to explore the space of possible configurations
decide whether to scale out. We implemented Accordion and e
uated it using H-Store, a shared-nothing in-memory DBMS. (
results using the TPC-C and YCSB benchmarks show that Ax
dion achieves benefits compared to alternative heuristics of uf
an order of magnitude reduction in the number of servers used
in the amount of data migrated.

1. INTRODUCTION

Today's distributed computing platforms, namely clusters
public/private clouds, enable applications to effectively use reson
inan on demand fashion, e.g.. by asking for more servers when
load increases and releasing them when the load decreases. §
elastic applications fit well with the pay-as-you-go cast mode

Permission % make digital or hard copies of all or pant of this work
personal or classroom use is graned without fee rovided that copies
ot made or distributed for profit o commercial advantage and that co)
bear this notice and the full citation on the first page. To copy otherwise
sepublish, % post an servers or 1o redistrbuie W lists, requires prior spec
permission and/ox 3 fee. Amicles from this volime were invited © pre:
their results 3 The 40t International Conference on Very Large Data Ba
September 1 - Sth, 2014, Hangzhou, China,
Proceedings of the VLDE Endowment, Vol. 7. No. 12
Copyright 214 VLDB Endowment 2150-809% 1408 $ 10.00.

Skew-Aware Automa
Shared-Nothing,

Andrew Pavlo (
Brown University Ye
pavlo@cs.brown.edu krl@

ABSTRACT

The advent of affordable, shared-nothing computing systems
tends a new class of parallel database management systems (DB
for on-line {OLTP) that s
without sucrificing ACID guarantecs (7, 9} The performanc:
these DBMSs is predicated on the existence of an optimal datat
design that is tailored for the unique charicteristics of OLTP w
loads [43]. Deriving such designs for modem DBMSs is diffic
especially for enterprise-class OLTP systems, since they imy
extr the use of stored p the nead for |
talmeing in the preseace of time-varying skew, complex schen
and deployments with larger number of partitions.

To this purpose, we present a novel approach to automatic
partitioning databases for enterprise-cliss OLTP systems that
nificantly extends the state of the art by: (1) minimizing the nur
distributed transactions, while concurrently mitigating the eff
of temporal skew in both the data distribution and accesses, (2)
tending the design space to include replicated secondary inde
(4) organically handling stored procedure routing, and (3) sca
of schema complexity, data size, and number of partition
effort builds on two key technical contributions: an analytical
maodel that can be used to quickly estimate the relative coordina
cost and skew for a given workload and a candidate database
sign, and an informed exploration of the huge solution space be
on large neighbarhood search. To evaluate our methods, we i
grated our database design tool with a high-performance para
main memory DBMS and compared our methods against both |
ular heuristics and a state-of-the-art research prototype [17]. U
adiverse set of benchmarks, we show that our apprach impre
throughput by up to a factor of 16x over these other approache

Categories and Subject Descriptors

H.2.2 [Database Management]: Physical Design
Keywords

OLTP, Parallel, Shared-Nothing, H-Store, KB, Stored Procedur

1. INTRODUCTION
The difficulty of scaling front-end applications is well knowr
DBMSs executing highly concumrent workloads. One approac

Permission % make digital or hard copies of all or part of this word
personal or classroom use is granted without fee provided that copie:
ot made or diswibuted for profit or commercial advantage and that co
bear this notice and the full citation on the first page To copy otherwis
sepublish, 1o post on serversor 1o redistbure 1 lists, requires prior spe
permission andfor 3 fee.
SIGMOD'12, May X0-2
Copyright X112 ACM

Scomsdak, Arizona, USA
-1247-9/12/05 _.$10.00.

2012,
45

E-Store: Fine-Gr:
Distributed Tran:

Rebecca Taft*, Essam Mansour,

Ashraf Aboulnaga4
*MIT CSAIL, #Qatar Computing Res:
(

{rytaft,
{emansour, mserafini, aabouln:
aelmore@cs.

ABSTRACT

On-line transaction processing (OLTP) database manage
tems (DBMSs) often serve time-varying workloads du
weekly or seasonal fluctuations in demand, or becaus
growth in demand duc to a company's business sucee
dition, many OLTP workloads are heavily skewed to “1
ar ranges of tuples. For example, the majority of NYS$
involves only 40 stocks. To deal with such fluctuations
DBMS needs to be elastic; that is, it must be able toe
contract resources in response to load fluctuations and dy
balance load as hot tuples vary over time

This paper presents E-Store, an clastic partitioning |
for distnibuted OLTP DBMSs. It automatically scakes re
response todemand spikes, periodic events, and gradual(
an application’s workload. E-Store addresses localized b
through a two-tier data placement strategy: cold data is
in large chunks, while smaller ranges of hot tuples an
explicitly to individual nodes. This is in contrast to
single-tier hash and range partitioning strategics. Our ¢
tal evaluation of E-Store shows the viability of our apy
its efficacy under variations in load across a cluster of
Compared to single-tier approaches, E-Store improves t
by up to 130% while reducing latency by 80%.

L

TRODUCTION

Many OLTP applications are subject o unpredictable
in demand. This variability is especially prevalent in 1
services, which handle large mumbers of requests wha
may depend on factors such as the weather or social mo
As such, it is important that a back-end DBMS be resili
spikes. For example, an e-commerce site may become ow
during a holiday sale. Moreover, specific items within th
can suddenly become popular, such as when a review of
aTV show generates a deluge of arders in on-line books

This  work is  licensed under  the  Creative
N

Autribution-NonCommercial-NoDerivs 30 Unpory
cense o view a copy of this licen
hp/icreativecommons orglicensesby-ncnd3.0/.  Obtain

prior 1o any use beyond those covered by the license. Contaq
bolder by emailing info@vIdb.org. Articies from this volume 1
® present their results a the 41t Intemational Conference on
Data Ba st 315 - September 4th 2015, Kohala Coast. |
Prac eedings of the VLDB Endowment, Vol. 8. No.

Copyright 314 VLDB Endowment 2150 80971411

Clay: Fine-Grained Adaptive Partitioning
for General Database Schemas

Marco Serafini=, Rebecca Taft*, Aaron J. EImore#,
Andrew Pavlo*, Ashraf Aboulnaga*, Michael Stonebraker*

“Qatar Computing Research Institute - HBKU, *Massachusetts Institute of Technology,
*University of Chicago, *Carnegie Mellon University
mserafini@gf.org.qa, rytaft@mit.edu, aelmore@cs.uchicago.edu,
pavlo@cs.cmu.edu, aaboulnaga@qf.org.qa, stonebraker@csail.mit.edu

ABSTRACT

Transaction processing database management systems (DBMSs)
are eritical for today's data-intensive applications because they en-

and thus their database has to be deployed ina dmnl:nllcd DBMS.
The key factor affecting such a system’s performance is how the
database is partitioned. If the database is partitioned incorrectly, the
number of distributed transactions can be high. These transactions

have to synchronize their operations over the netwaork
considerably slower and leads to poor performance. Previous work
on elastic database repartitioning has focused on a certain class of
applications whose database schema can be represented in a hierar-
chical tree structure. But many applications cannot be partitioned
in this manner, and thus are subject to distributed transactions that
impede their performance and scalability.

In this paper, we present a new on-line partitioning approach,
called Clay, that supports both tree-based schemas and more com-
plex “general” schemas with arbitrary forcign key relationships.
Clay dynamically creates blocks of tuples to migrate among servers
during repartitioning. placing o canstraints on the schema but tak-
ing care to balance load and reduce the amount of data migrated.
Clay achieves this goal by including incach block a set of hot tuples
and other tuples co-accessed with these hot tuples. To evaluate our
appraach, we integrate Clay in a distributed, main-memory DBMS
and show that it can generate partitioning schemes that cnable the
system to achieve up to 15x better throughput and 9% lower la-
tency than existing approaches.

1. INTRODUCTION

Shared-nothing, distributed DBMSs are the core component for
modern on-line transaction processing (OLTP)applications in many
diverse domains. These systems partition the database across mul-
tiple nodes (i.c., servers) and route transactions to the appropriate
nodes based on the data that these transactions touch. The key to
achieving good performance is to use a partitioning
mapping of tuples to nodes) that (1) balances load and {2) J\uxds

This work is liensed under e Creative Commons Atwibution-
NonCommerciaNoDerivatives 4.0 Intemational License. To view 2 copy
of this license, visithtip: 2 y-c-ndi4 /. F
any use beyond those covered by this license. obtain permission by emailing
info@vidb.org

Proceedings of the VLDB Endowmens, Vol. 10, No. 4

Copyright 16 VLDB Endowment 2150-809716/12

445

expensive multi-node transactions [3, 23]. Since the load on the
DBMS fluctuates, it is desirable to have an elastic system that auto-
matically changes the database’s p. oning and number of nodes
dynamically depending on load intensity and without having tostop
the system.

The ability to change the partitioning scheme without disrupt-
ing the database is important because OLTP systems incur fluctu-
ating koads. Additionally, many workloads are scasonal or diumal,
while other applications are subject to dynamic fluctuations in their
workload. For example, the trading volume on the NYSE is an
order of magnitude higher at the beginning and end of the trading
day, and transaction volume spikes when there is relevant breaking
news. Further complicating this problem is the presence of hatspots
that can change over time. These occur because the access pattern
of transactions in the application’s workload is skewed such that
a small portion of the database receives most of the activity. For
example, half of the NYSE trades are on just | % of the securities.

One could deal with these fluctuations by provisioning for ex-
pected peak load. But this requires deploying a cluster that is over-
provisioned by at least an order of magnitude [27]. Furthermore, if
the performance bottlencck is due to distributed transactions caus-
ing nodes to wait for other nodes, |hcn ,Addlng servers will be of
little or no benefit. Thus, over-provisioning is not a good altema-
tive to effective on-line reconfiguration.

Previous work has developed techniques to mtomate DBMS re-
configuration for unpredictable OLTP workloads. For example,
Accordion |26], ElasTras [6], and E-Store [28] all study this prob-
lem. These systems assume that the database is pant
oni into a set of static blocks, and all tuples of a bloc
together at once. This does not wark well if transactions access
tuples in multiple blocks and these blocks are not colocated on the
same server. One study showed that a DBMS's throughput drops
by half from its peak performance with only 10% of trnsactions
distributed [23]. This implies that minimizing distributed transac-
tions is just asimportant as balancing load when finding an optimal
partitioning plan. To achieve this goal, blocks should be defined
dynamically so that tuples that are frequently accessed together are
grouped in the same block: co-accesses withina block never gener-
ate distributed transactions, regardless of where blocks are placed.

Another problem with the prior approaches is that they only work
for tree schemas. This excludes many applications with schemas
that cannot be transposed into a tree and where defining static blocks
is impossible. For cxample, consider the Products-Parts-Suppliers
schema shown in Figure 1. This schema contains three tables that
have many-to-many relationships between them. A product uses
many parts, and a supplier sells many parts. If we apply prior ap-
proaches and assume that either Products or Suppliers is the oot




Discussion Points

e Schism is offline/periodic. How important is

online partitioning, really?
e \Would an OLAP workload change how we
partition? Consider parallel query execution.

IIIIIIIIIIII



