
Schism: Workload-Driven
Partitioning and Replication
Curino et al., VLDB 2010
Presented By: Brad Glasbergen

OLTP Workloads

● Short-lived transactions
● Touch few data items
● Write-heavy

Scaling OLTP Databases

Orders

Overloaded!

Scaling Out OLTP Databases

A

B

Orders

Distributed Transactions

A

B

Commit at both or not at all!

Two-Phase Commit

A

B

Run Transaction
Logic

A=A-1

B=B-1

Two-Phase Commit (Phase 1)

A

B

Can we commit?

Two-Phase Commit (Phase 1)

A

B

Can we commit? OK

OK

Two-Phase Commit (Phase 2)

A

B

Commit!

Two-Phase Commit (Phase 2)

A

B

Commit! OK

OK

2PC Overheads

A

B

Lock(A,B)

Blocked!

2PC Overheads

Avoiding 2PC

A

B

Move B

Avoiding 2PC

A,B

Overloaded?

Objectives
1. Minimize distributed transactions
2. Roughly balance load/data

Similar to Graph Partitioning problem!
Minimize Edge-cuts subject to imbalance factor

K-Way Graph Partitioning

1

1

1

K-Way Graph Partitioning

1

1

1

1 2

1
Each partition is at most twice the weight of another

K-Way Graph Partitioning

1

1

1

1 2

1
Each partition is at most twice the weight of another

K-Way Graph Partitioning

1

1

1

1 2

1
Each partition is at most twice the weight of another

K-Way Graph Partitioning

1

1

1

1 2

1
Each partition is at most twice the weight of another

Mapping Partitioning to Graphs

Statement Logging

Determine tuple access
patterns and
frequencies!

Mapping Partitioning to Graphs

A

B C

Accessed tuples
become nodes

Mapping Partitioning to Graphs

A

B C

Edges:
Frequency of
tuples
accessed
together

1 2

1

Mapping Partitioning to Graphs

A

B C

1 2

1
Each partition is at most twice the weight of another

Decide balance
factor

Mapping Partitioning to Graphs

A

B C

1 2

1
Each partition is at most twice the weight of another

Incorporating Replication

A

B C

1 2

1

Incorporating Replication

A

B C

A

CB

A

C

B
1

2
1

Incorporating Replication

A

B C

A

CB

A

C

B
1

2
1

1

1 2 2

33

Internal edges: update count!

Incorporating Replication

A

B C

A

CB

A

C

B
1

2
1

1

1 2 2

33

Internal edges: update count!

Explaining the Partitioning
ID <= 2

ID = 1 ID <= 4

Yes No

{0,1} 0 0 1

 Prefer simple explanations

Schism Partitionings
● YCSB-Default: Hash Partitioning
● YCSB-Range: Range Partitioning
● TPC-C: Hash on warehouse, replicate items table
● TPC-E: Lookup table, no good known manual partitioning
● Epinions: Lookup table, beats manual partitioning

Longest Partitioning: 12 minutes!

Discussion Points
● Schism is offline/periodic. How important is

online partitioning, really?
● Would an OLAP workload change how we

partition? Consider parallel query execution.

